Means and Policy for Securing Supply Security

Prof. Dr.-Ing. Dr.h.c.mult. Friedrich-W. Wellmer,
former President of the Federal German Geological Survey BGR, Hannover, Germany
and
Prof. David A. Vaccari, PhD, P.E.
Department Director, Civil, Environmental and Ocean Engineering

Stevens Institute of Technology
Castle Point-on-the-Hudson, Hoboken, NJ, USA



Means and Policy for Securing Supply Security




Security of Supply

Supply from primary resources Supply from secondary resources

--- existing capacities
question of --- reserves
--- planned capacities
--- resources
--- forecast: cost of recycling vs.
--- geopotential price of primary phosphate



Development of total Al-Production (Primary + Secondary Aluminium)
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Examples for transfer of resources to reserves and vice versa from Germany:

Case 1: potash mine south of Hannover (Siegfried Giesen) closed 1991: reserves — resources

prepared for reopening 2014: resources —> reserves

Case 2: Graphite mine Kropfmuhl in Bavaria, closed in 2005: reserves — resources

reopended in 2012: resources— reserves



The Growing of Reserves —

Example: Qil
Production Reserves Ratio w
production
1950 543 Mio t 11,277 Mio t 20
2010 3,937 Miot | 216,900 Mio t 55




The Growing of Reserves —

Example: Phosphate

Production Reserves Ratio Reserv?s
production
1988 152.6 Mio t 13 855 Mio t 91
2011 191.0 Mio t 71 000 Mio t 372

(Source: USGS, Mineral Commodity Summaries)



Static life time — the reality

== Mine production
- Static life time of reserve base*
Static life time of reserves

Data sources: USGS, BGR database, 2009
*Before 1988, the USGS only classified
reserve base
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Means and Policy for Securing Supply Security

Is there a right to know by the public?




Who are the biggest players in the phosphate field?

a.) Integrated fertilizer companies

b.) More and more target of multinational big mining companies
Their targets: Tier one projects (large, long-lived projects
with prospectively low costs)
Commodities: copper, iron ore, coal, gold, (diamonds)

New targets: potash, phosphate (nickel, zinc)

(Crowson, P. (2012): Solving the minerals equation? Demand, prices and
supply. Paper LE STUDIUM conference Life and Innovation

Cycles in the Field of Raw Materials Supply and Demand—a
Transdisciplinary Approach, 19.—20. April 2012, Orléans, France)



Moving down the copper
USe/b cost curve
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weighted average of
Cu-projects in (pre)
feasibility status
0.67 US%/Ib

Underground pit

Open pit

Copper projects in (pre)feasibility
§tatus, basisi 50 % of Iistled projects

8 10 12 1

(Source: J.Vasters, Commodity Fact Sheet 2011, BGR/DERA)
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New Projects: Two Alternatives:

a.) Start in Geopotential field, i.e. invest in exploration

b.) Start in Resources field (known, but uneconomic at present),

Consequences:

1.) For some commodities grades become higher and higher
2.) For others grades decline due to new technologies

3.) Operations become larger and larger, requiring larger reserves.
(Economics of scale, Taylor Rule)



Chapter 8 - Production Lifetime "

Fig. 8.1a.
Lifetime of Canadian base-

metal mines at the time

of production decision
(1967-1977) (Wellmer 1979):

1. the relationship postulated
by Taylor (1977): y=0.83x"%;
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Origin of processed ore [%]

Iron Ore Supply Germany since 1950
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Development mean grades of Cu and Ni-mines in Australia, Canada und USA
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——Linearer Trend 1865-1915
——Linearer Trend 1919-2009
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Figure 1-2 Past Productivity and Anticipated Productivity from Technology
Change from One Company
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ITP : Energy and environmental profile of the US Mining Industry, www1.eere.energy.gov/manufacturing/industries_technologies/mining/pdfs



Transparency:

Two main aspects:

-- production/consumption precise figures

-- reserves estimates , not precise
figures and dynamic
figures




EXPLORATION MINERAL MINERAL

RESULTS ~— ™ RESOURCES RESERVES
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knowledge and
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Consideration of mining, metallurgical, economic, marketing,
legal, environmental, social and governmental factors
——p  (the ‘modifying factors’) ———————»

All these codes include the concept of
Competent Persons. A Competent Person is a
suitably experienced professional who has a
minimum of five years’ experience which is
relevant to the style of mineralisation and scope
of the report. The Competent Person must also
be a member of a recognised professional
association

Figure 33:

Relation between Mineral Resources and
Mineral Reserves showing classification with
increasing quality of data. Redrawn after CIM
[2011]

(Source: S. Schmidt: From Deposit to Concentrate: The Basics of Tungsten Mining, Part 1: Project Generation and
Project Development , Tungsten—Internat. Tungsten Industry Ass., June 2012)



Measured Resource

— A ‘Measured Mineral Resource’ is that part of a Mineral
Resource for which tonnage, densities, shape, physical
characteristics, grade and mineral content can be
estimated with a high level of confidence.

— It is based on detailed and reliable exploration, sampling
and testing information gathered through appropriate
techniques from locations such as outcrops, trenches,
pits, workings and drill holes. The locations are spaced
closely enough to confirm geological and grade
continuity.

ASX-Perth February 2006



U.S. Department of the Interior
U.S. Geological Survey

MINERAL COMMODITY

SUMMARIES 2013
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science for a changing world
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FIGURE 1.—Major Elements of Mineral-Resource Classification, Excluding Reserve Base and
Inferred Reserve Base
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Three dimensional UN Framework Classification System (UNFC)

- Commercial projects

Potentially commercial projects

Sales
Production

Non-commercial projects

Exploration projects

U

Additional quantities in place

Other combinations

Socio-economic viability

Non-sales
Production

Extracted quantities

123  Codification (E1;F2;G3)

(http://www.unece.org/fileadmin/DAM/energy/se/pdfs/lUNFC/unfc_pres/S.Foster NFC_BlackSea_CaspianEnConf_14.02.2013.pdf)
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Overall conclusions ESPC2013
6-7 March 2013, Brussels

e We should and can take action today by being more efficient in our use, by wasting
less, recycling more, reducing environmental losses, and by smart cooperation. The
idea of creating a European market for recycled phosphorus with a value chain
approach received strong support.

Knowledge, benchmarking, dissemination
e monitoring P flows, P reserves
e risk assessments, LCAs, decision support systems,
e contaminants

e agronomy, soil P status, plant breeding
From a perspective of knowledge creation and dissemination, there are several
important steps to be taken. First the European Union should set up its own
monitoring system that provides insight into phosphorus flows and global phosphorus
rock reserves. This will enhance our capacity to identify which measures should be
taken by which player and a P-footprint could be developed. Secondly the creation of
business cases should be strengthened by the use of risk assessments, LCAs and
decision support systems. Thirdly the information on contaminants should be
expanded. Finally, information on agronomy, soil P status and plant breeding should

be intensified.




Example: NE-Metal-Study Groups

International Lead- and Zinc Study Group (ILZSG, since 1959) \{\&,
= 30 Members, among them China, EU, USA w

\LZSG

N

= |LZSG: 85% world production and consumption

= 15 Members, among them Australia, Brazil, EU, Japan, Russia

International Nickel Study Group (INSG, since 1990) (Z,%E

» |INSG : 37 % ore production, 51 % primary production, 34 % consumption

Internationale Copper Study Group (ICSG, seit 1992)
= 24 Members, among them Australia, China, EU, USA
» |CSG: 76% ore production, 84% refinery production, 80% consumption

— Consultations between Producer- and Consumer-Countries
Data, |nf0rmations) BGR Bundesanstalt fiir

Geowissenschaften
A e und Rohstoffe

Gebauer, BGR/SWP, Berlin, 246.2.201

GEOZENTRUM HANNOVER



A Joint Report by the OECD Nuclear Energy Agency @ﬁ
and the International Atomic Energy Agency
2012

©)

Uranium 2011:
Resources, Production
and Demand

pr VAEN
& NEA

NUCLEAR ENERGY AGENCY




Smr)ﬁ’ ed MFA ‘_ﬂ

Net Inputs for

Food Ingested
Production 1 Phosphorus

= 15%

1 85%

== -~ 50% Recovery of Waste => 7.5% conserved

-

50% Reduction in consumption => 42.5% conserved

| STEVENS ‘




Domain of potential sinks to water

(9.5 — 13 Mt Ply) and earth compartments

2012/01/24

. UNEP-Panel Manila

See IFA (2006); Liu et al. 2005;
Mac Donald et al. 2011, Seyhan,
2009; Schroder et al. 2011; Smil

2000a,b), Smit et al. 2010
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The International
Nuclear Fuel Cycle Evaluation
INFCE
(from 1977 to 1980, set up on intitiative of the USA)

Working Group 1: Fuel and Heavy Water Availability
Working Group 2: Enrichment Availability
Working Group 3: Assurances of Long-Term Supply of Technology,

Fuel and Heavy Water and Services in the Interest of National Needs
Consistent with Non-Proliferation

Working Group 4: Reprocessing, Plutonium Handling, Recycling
Working Group 5: Fast Breeders

Working Group 6: Spent Fuel Management

Working Group 7: Waste Management and Disposal

Working Group 8: Advanced Fuel Cycle and Reactor Concepts
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Phosphate deposits
of the world

VOLUME 3
Neogene to
Modern phosphorites

EDITED BY
WILLIAM C. BURNETT

Department of Oceanography,
Florida State University, Tallahassee, Florida

STANLEY R. RIGGS

Department of Geology,
East Carolina University, Greenville, North Carolina

International

Geological Correlation Programme
Project 156:

Phosphorites

Working Group I — ‘Proterozoic and Cambrian
Phosphorites’, (Co-Chairmen: P.J. Cook and J.H.
Shergold);

Working Group II — ‘International Phosphate Resource
Data Base’, (Co-Chairmen: A.J.G. Notholt and R.P.
Sheldon);

Working Group III — “Young Phosphogenic Systems’,
(Co-Chairmen: W.C. Burnett and S.R. Riggs); and

Working Group IV — ‘Cretaceous and Tertiary
Phosphorites’, (Co-Chairmen: K. Al-Bassam, J. Lucas,
and S. Sassi).

(start 1977 to 1988)



Project area

2, 300sq km continuous
hosphate and uranium

Xplorato

Hinda mine

Clear port
access

http://www.comincoresources.com/about-us/company-profile



EUtUrE"Seenarios e
Sardllanding — ‘RogerPielke Jr.” 1 Law

=\Vhen policies on emissions reductlons colllde W|th policies

foctsseldrl Seaggpgiie ¢y
economnic growth will win out every time.

44

“‘J’Ji uceeed, any policies ... will necessarily have to offer short-
_f rmbenefits that are in some manner proportional to the
= '('3rt term costs.”

- ’Handlng (Cordell et al, Scholz & Wellmer)

—— Preferred scenario: Phosphate rock demand decreases as secondary
- sources increase, due to increasing awareness of high environmental
and social costs, and increasing price of mineral fertilizers

| STEVENS |
41




Conclusions

Need for better transparency:
--- monitoring of material flows
--- dynamics of reserves and resources

--- understanding the geopotential as
source of future reserves

--- understanding learning curves for
future P supply
Organisational framework: Possibilities
--- revive IGCP phosphate project for geopotential
--- adopt existing or former structure to P:

(UNEP International Resource Panel, NE-Study
groups, Uranium Redbook, INFCE)






Reserve Slides




Reserves

Production (Consumption)

is always only a Snapshot of a

dynamically developing Reserve-/Resource System.

It is not the life time of a commodity.




Cumulative zinc production [Mt]

Lower-Third-Rule: Technical Availability of Metals
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What motivates companies, government bodies, governments
or other institutions to move to quantify reserves,

i.e. to move rersources out of the ,potential field® into the
Reserve Block?

1.) Companies — JORC Code
2.) Regional planning authorities

3.) Governments



Conceptual world environmental footprint from phosphoric acid-based fertilizers - 2009

13 mmt Pz'D;
other sources
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Sulfuric acid

Ore content 0 10-15% P O:
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-8% mmt PO Soil erosion,
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(Source: Global research to nourish the world, Virtual Fertilizer Research Center/ IFDC)
www.vfrc.org/.../vfrc_blueprint_for_global security-1.pdf)



Fig. 10

Mill head grades [% Cu]

1880 1900 1920 1940 1960 1980 2000

Figure 10: Development of copper grades of ores mined in the US (after Ayres et al. 2002).



Rohstoffpreis und BIP: langfristige Preisschwankungen
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Flg. 9.3. 40 4
Specific operating costs of

various non-ferrous metal
mines (Table 9.3a)

Operating costs (CAS$/t)
N
o

10
B
1000 2000 3000 4000 5000 6000 7000
Capacity (t/d)
gat:e':atgifa;:osts of sor ) Mine Capacity Operating costs
peraling ne se X (t/d) y (CAS/t)
lected mines
Aur, Louvicourt 4300 14.22
Barrick, Bousquet 2400 26.33
Barrick, Holt-McDermott 1775 29.72
Breakwater, Bouchard-Hebert 2880 20.11
Newmont, Holloway 2000 31.18

Hudson Bay, Ruttan 5350 21.62
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Consecutive learning curves in technology and exploration
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Conclusions

[0 Phosphorus is an essential daily component of our diet and
agriculture system and the world is dependent on finite
fossil sources

[0 Commercial sources are dominated by only a few countries
and these are outside the EU

[0 Rock phosphate extraction is not monitored by weither the
UN or the EU

[0 Geopolitical changes could affect the stability of supply

O Global demand mainly from the developing countries is
increasing currently at 5-6% per year and prices are
increasing

O Only about 16% of the mined P-rock is traded

O Only 20-25% of the mined P-rock ends up in the food we
eat

[0 Now important to become more efficient with how we use
the mined sources and secure and reuse the P we have in
manure and solid and liquid waste streams

(Source: A.Rosemarin & L.S.Jensen : The Phosphorus Challenge: European Sustainable Phosphorus Conference,
Brussels, 6. March 2013.)
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